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Abstract

The component mode synthesis (CMS) method is widely used to establish reduced dynamic models of complex

structures so that iterative problems such as flutter analyses can be efficiently analyzed with reasonable cost and time. In

the present study, a structural coupling method is developed for the dynamic analysis of a nonlinear structure consisting of

substructures connected by nonlinear interfaces such as nonlinear hinge joints or sliding mode conditions. In order to

verify the coupling method extended to consider the hinge joints, a numerical plate model consisting of two substructures

and torsional springs is synthesized, and its modal parameters are compared with analysis data. The extended coupling

method is further improved to consider the sliding mode condition. The improved coupling method is applied to a three-

substructure-model with nonlinearity of sliding lines between the substructures. Finally, using the proposed coupling

method, a dynamic model of a tilting structure consisting of two substructures with sliding line conditions is synthesized,

and its dynamic characteristics are investigated. The analysis results show that the improved coupling method is effectively

applicable to the dynamic analysis of a nonlinear structure with the sliding mode condition.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Most practical engineering structures are complicated with distributed or concentrated structural
nonlinearities. For example, a deployable missile control fin has a nonlinear hinge joint that consists of a
torsional spring, a compression spring, and several stoppers. Because of wear and manufacturing tolerance,
the hinge has some structural nonlinearities such as preload, free-play, asymmetric bilinear stiffness, hysterisis,
and coulomb damping [1]. Another example is a pantograph tilting system consisting of a pantograph and a
tilting structure. The pantograph tilting system is currently being used in tilting trains, which are becoming the
standard internationally, especially in Europe. The car body of a tilting train moving on a curved line is tilted
inward to compensate the centrifugal force, as shown in Fig. 1. Therefore, the speed and run can be increased
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. Schematic diagram of pantograph tilting structure.

Fig. 2. Pantograph tilting devices: (a) bogie mounted pantograph; (b) roof mounted passive pantograph; and (c) roof mounted active

pantograph [2].
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on conventional curved lines whereas normally speed reduction would be necessary. In order to maintain a
reliable electrical energy supply from the catenary to the train by means of the contact between the pantograph
and catenary cables, even when the train is at maximum inclination, the train must have an anti-tilt mechanism
such as a bogie mounted pantograph or roof mounted passive or active pantographs, as shown in Fig. 2. The
roof mounted active tilting structure, which consists of base and sledge frames driven by electromechanical
actuators, has been widely used and developed. Despite disadvantages such as more complex failure modes
and new design, this structure allows for no loss of passenger seats and full compensation of the suspension
roll effect while being of low weight [2]. The pantograph tilting systems also have some structural
nonlinearities because of worn or loose hinges of the pantograph, and a sliding mode condition between the
sledge and base frames. These nonlinearities cannot be completely eliminated, and exert significant effects on
the static and dynamic characteristics of the pantograph tilting structure. Therefore, it is necessary to establish
an accurate structural dynamic model to predict or control the nonlinear dynamic systems. However,
considerable computational effort is required to perform dynamic analyses of many practical engineering
problems by making use of full-order nonlinear finite element models, especially when iterate analyses are
required such as time-domain nonlinear flutter analyses or structural optimal design.

In general, most practical engineering structures are complicated and may have some nonlinearities. The
information about the position of structural nonlinearity offers opportunities to separate the total structure
into linear and nonlinear components, so that they can be analyzed and designed independently. In order to
reduce the number of coordinates in a dynamic analysis of a complex structure, the component mode synthesis
(CMS) techniques are popularly used in structural dynamic applications for combining substructures or
components represented with reduced degrees of freedom (dof). Numerous studies on substructure synthesis
methods have been reported. Hunn [3] introduced the first partial modal coupling method. Hurty [4] assumed
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that the motion of each substructure could be expressed by a linear combination of some component modes
consisting of rigid-body modes, constraint modes, and normal modes. Craig and Bampton [5] treated the
displacements of substructures as being composed of constraint modes and normal modes. This model is
known popularly as the fixed interface CMS method. Craig and Chang [6,7] developed free and hybrid
interface CMS methods employing free interface substructure normal modes supplemented by reduced
flexibility to account for the effects of residual modes. Meirovitch and Hale [8,9] introduced admissible
functions and vectors to represent the motion of each substructure. Kapel et al. [10–12] suggested fictitious
masses loaded at interface coordinates of a central substructure of which the connection to the additional
substructure is statically determinate. Bourquin and d’Hennezel [13] proposed a reduction procedure based on
the use of interface modes to reduce the number of interface coordinates in the fixed interface CMS method.
Tran [14] extended this procedure to the free and hybrid interface methods. Bladh et al. [15] investigated the
numerical instability of the free interface CMS methods due to matrix ill-conditioning and proposed a
stabilized free interface CMS method. Apiwattanalunggarn et al. [16] extended the fixed interface linear CMS
method to nonlinear structures by using fixed interface nonlinear normal modes. This approach is valid as
long as the coupling between substructures is relatively weak. Kim et al. [17] extended the Craig–Bampton
method to consider concentrated nonlinear hinge springs and then established a nonlinear dynamic model of a
deployable missile control fin. Shanmugam and Padmanabhan [18] developed a hybrid CMS method by
combining the fixed interface method and the free interface method, and carried out a rotordynamic analysis.

Over the years studies on train pantograph systems have mostly focused on active control of the
pantographs in order to exert constant contact forces between catenaries and pantographs [19–21] as well as
modeling and analyses of the dynamic interactions of the catenary–pantograph systems in conventional high
speed trains [22–25]. As far as the authors are aware, modeling and dynamic analysis of pantograph tilting
systems have not been documented in the open literature.

In the present study, the extended Craig–Bampton method is improved to take into account not only the
concentrated structural nonlinearities but also the sliding mode condition. In order to verify the extended
coupling method, a numerical plate model consisting of two substructures and seven torsional springs is
synthesized. The extended method is then further improved to consider the sliding mode condition. The
improved coupling method is applied to a three-substructure-model with structural nonlinearity of sliding
lines between the substructures, and the coupled structural model is verified with dynamic results. Finally, a
nonlinear reduced model of a pantograph tilting structure is established by using the proposed coupling
method, and the dynamic characteristics are investigated.

2. Substructure synthesis for hinge joints

The substructure synthesis method, extended to consider concentrated nonlinear hinge joints, is summarized
in this section. In order to verify the method, a numerical plate model with two substructures and seven
torsional springs is synthesized by using the extended method, and its modal parameters are compared with
analysis data.

2.1. CMS method

To analyze the dynamic characteristics of a complex structure by using the substructure synthesis method, it
is necessary to divide the whole structure into a limited number of substructures. Each substructure is
connected to at least one of the other substructures, as shown in Fig. 3.

For an arbitrary linear undamped substructure, the equations of motion of a substructure A are written as

MRR MRI

MT
RI MII

" #
€uR

€uI

( )
þ

KRR KRI

KT
RI KII

" #
uR

uI

( )
¼

0

FI

( )
(1)

where {FI} is the vector of forces applied at the interface coordinates by the adjoining substructure. The mass
and stiffness matrices M and K and the displacement and force vectors u and F are partitioned according to
the interior (R) and interface (I) coordinates of the substructure.
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Fig. 3. A scheme of separate structure analysis.
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The basic assumption in the CMS method is that the displacement of each substructure can be represented
by a linear combination of some normal and constraint modes as follows:

uR

uI

( )
¼

CN CC

0 I

� � xR

xI

( )
(2)

where ½CN �; ½CC �; and xR xIf g
T are the normal modes, the constraint modes, and the vector of independent

generalized displacements, respectively. These modes can be obtained by the eigenvalue problem and the static
equilibrium equation described in detail in Refs. [5,17].

The substitution of Eq. (2) into Eq. (1), and pre-multiplication by the transformation matrix of Eq. (2), gives
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where m is the generalized mass matrix and o2
R and kI are the generalized stiffness matrices corresponding to

the interior and interface coordinates, respectively. The size of the matrices in Eq. (3) is the sum of the number
of normal modes used and the number of interface dof.

2.2. Extended substructure synthesis method

For simplicity, it is assumed that the whole structure consists of two substructures (Sub-A and Sub-B), and
there are no external forces applied to the interior coordinates of the substructures. If the two substructures
are coupled by torsional springs located at some of the interface coordinates, the interface coordinates of each
substructure can be divided into the coordinates (Ip) with torsional springs and the other coordinates (In). The
generalized equations of motion of Sub-A and Sub-B can be expressed as
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The compatibility equations of the interface coordinates (Ip, In) of the two substructures can be written as follows:

fu
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where [Ky] is a diagonal matrix of the torsional spring coefficients according to each Ip. Substitution of Eqs. (6) (7),
and (8) into Eqs. (4) and (5), and coupling of these equations gives
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The natural frequencies and eigenvectors of the combined structure with torsional springs can be easily
obtained from Eq. (9), which can be applied to complex structure problems with several substructures.
2.3. Numerical example 1

To verify the extended substructure synthesis method, the free vibration of a cantilever plate is considered.
The plate model-1 has two substructures coupled by a hinge section with seven torsional springs, as shown in
Fig. 4. Each node has three dofs of one translation and two rotations. The torsional spring coefficient, elastic
modulus, density, and Poisson ratio used for the example are Ky ¼ 1Nm/rad, 72GPa, 2800 kg/m3, and 0.33,
respectively. The frequency range of interest is chosen to be 0–500Hz. The lowest one and seven normal modes
are used to represent Sub-A and Sub-B, respectively.

By using the extended coupling method, the dynamic model of the whole structure is obtained, and the
total dofs of plate model-1 can be reduced from 252 to 50. The modal parameters calculated by the present
extended method are compared with those directly calculated using MSC/NASTRANs. Table 1 gives the
frequencies, error, and modal assurance criteria (MAC) [26], and Fig. 5 shows the first four fundamental mode
Sub A

Interface coordinate

Sub B

Kθi

0.04 0.12

0.
12

0.
00

1

Unit: m

Fig. 4. A scheme of plate model-1 with two substructures and torsional springs.
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Table 1

Comparison of natural frequency between NASTRAN and present method.

Frequency (Hz), error (%) and MAC

Mode NASTRAN Present Error MAC

1 22.26 22.26 0.000 1.000

2 99.42 99.43 0.004 1.000

3 207.38 207.41 0.016 1.000

4 343.55 344.90 0.392 0.998

5 418.12 418.37 0.059 1.000

6 508.51 509.46 0.188 1.000

7 665.90 679.08 1.979 0.981

8 703.20 708.77 0.792 0.994

Fig. 5. First four fundamental mode shapes of plate model-1.
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shapes. It is clear that the normal modes of the entire structure are accurately obtained by using the extended
method.

3. Substructure synthesis for sliding mode condition

The extended substructure synthesis method described in the previous section is improved to consider the
sliding mode condition. For validation of the improved method, it is applied to a three-substructure-model
with structural nonlinearity of sliding lines between the substructures, and a dynamic analysis of the coupled
structural model is performed for a sinusoidal external force.

3.1. Improved substructure synthesis method

In order to consider the sliding mode condition, it is assumed that there is a sliding mode condition between
the substructures, as shown in Fig. 6. The interface coordinates of Sub-A and Sub-B are the guide line and the
roller, respectively. The movement of the roller is free along the guide line, but restricted to the perpendicular
direction to the guide line.

If the roller coordinate Ir is located between two interface coordinates, Ii and Ii+1, of the guide line, which
are assumed to be adjacent dofs, then the generalized equations of motion of Sub-A and Sub-B can be
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Fig. 6. A scheme of substructure analysis with sliding mode condition.
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expressed in the same manner as Eqs. (4) and (5) as follows:

(10)

m
ðBÞ
IrIr

m
ðBÞ
RIr

m
ðBÞT
RIr

m
ðBÞ
RR

2
4

3
5 €x

ðBÞ

Ir

€x
ðBÞ

R

8<
:

9=
;þ

k
ðBÞ
IrIr

k
ðBÞ
RIr

k
ðBÞT
RIr

k
ðBÞ
RR

2
4

3
5 xðBÞIr

xðBÞR

8<
:

9=
; ¼

F
ðBÞ
Ir
þ f
ðBÞ
Ir

f
ðBÞ
R

8<
:

9=
; (11)

where fF
ðAÞ
I i
g; fF ðAÞI iþ1

g; and fF
ðBÞ
Ir
g are the internal force vectors applied at the guide line (Ii, Ii+1) and the roller

(Ir) by Sub-B and Sub-A, respectively. The external force vectors ff
ðBÞ
Ir
g and {fR

(B)}, which are generated by the

external forces fF
ðBÞ
R g applied at the interior coordinates of Sub-B, can be expressed as follows:
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For synthesis of the substructures, the compatibility equations of the interface coordinates (Ii, Ii+1 and Ir)
can be written as follows:
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where l1 and l2 are the horizontal displacements between the interface coordinates and the roller, as shown
in Fig. 6. Substitution of Eqs. (13),(14), and (15) into Eqs. (10) and (11), and coupling of these
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equations gives

(16)

Because the displacements (l1 and l2) and the corresponding interface coordinates (Ii and Ii+1) adjacent to
the roller (Ir) vary according to the position of the roller, the mass and stiffness matrices of Eq. (16) have time
variable nonlinear properties. By using the proposed method, a dynamic analysis of the combined structure
with the nonlinearity of the sliding condition can be easily performed. The suggested approach can also be
applied to complex structure problems with several substructures and guide lines. The transformation matrix
from the generalized displacements to the physical displacements is
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3.2. Numerical example 2

This section presents a dynamic analysis results of the three-substructure-model with sliding mode
condition. Plate model-2 has three substructures, Sub-A, Sub-B, and Sub-C, connected to each other by sliding
conditions, as shown in Fig. 7. Sub-A and Sub-C are constrained by clamped boundaries, and the interface
coordinates of the substructures are guide lines. Sub-B is supported by two springs on both sides and has three
rollers at the interface coordinates. The substructures have the same material properties used in numerical
example 1, and the spring coefficient is K ¼ 1000N/m. Sub-A and Sub-C have 96 quad-4 elements, and Sub-B
has 144 quad-4 elements.

Using the proposed coupling method, a reduced dynamic model of the whole structure is obtained. The
frequency range of interest is chosen to be 0–500Hz. The lowest two normal modes are used to represent Sub-
A and Sub-C, respectively, and the lowest nine normal modes are used to represent Sub-B. The total dofs of
plate model-2 can be reduced from 1365 to 92.

Because the frequency response of a nonlinear structure depends on the magnitude and the direction
of external forces [27], it is not easy to determine the exact natural frequencies of the coupled plate model.
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Fig. 7. A scheme of plate model-2 with three substructures and sliding mode condition.
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In order to roughly investigate the natural frequencies of the coupled structure, the random excitation forces
shown in Fig. 8 are applied at the center of Sub-B (node-150) in the y and z-directions. Fig. 9 displays the
magnitude of the frequency response functions measured at the collocated node-150 in both directions for
external random forces, and the lowest five modes can be found.

In order to investigate the dynamic characteristics, dynamic analyses of the reduced plate mode are
performed for three kinds of external forces listed in Table 2. The excitation frequency of force-1 is the first
natural frequency of 35.2Hz in the y-direction, the frequency of force-2 is 50Hz in both directions, and the
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Table 2

Excitation forces for plate model-2.

Cases Frequency (Hz) Excitation forces (N)

1 35.2 (first resonance) Fy ¼ 0.4 sin(2p� 35.2� t), Fz ¼ 0

2 50.0 (�first/second resonance) Fy ¼ 15 sin(2p� 50� t), Fz ¼ 150 sin(2p� 50� t)

3 104.8 (�second resonance) Fy ¼ 50 sin(2p� 104.8� t), Fz ¼ 5 sin(2p� 104.8� t)

0
Frequency, Hz

5th(316.0Hz)

4th(264.4Hz)

3rd(193.8Hz)

2nd(104.8Hz)

FRF-z
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M
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Fig. 9. Magnitudes of frequency response functions measured at node-150 for random forces.
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frequency of force-3 is 104.8Hz, which is close to the second mode in the z-direction. The Newmark beta
method is used to calculate the dynamic response with a time span of 1ms. Fig. 10 shows the dynamic
responses of the coupled model for the external forces. In Figs. 10a,c, the dynamic responses show resonance
motions in the y and z-directions, respectively. The first natural mode shown in Fig. 10a is the sliding motion
of the linear mass-spring system consisting of only Sub-B and the supporting springs; the dynamic response
diverges in the y-direction as the time increases. The second natural mode shown in Fig. 10c is mainly the
resonance motion in the z-direction, but the motion is coupled with the sliding motion in the y-direction.
Therefore, the resonance motion is nonlinear and converges in the z-direction. The dynamic responses for
excitation force-2 are shown in Fig. 10b and Fig. 11, which clearly verify the dynamic connectivity between the
substructures. From the results, it is noted that the excitation frequencies and the nonlinear dynamic
characteristics are clearly shown in the responses of the coupled model.

4. Tilting structure with sliding mode condition

A reduced dynamic model of a tilting structure, consisting of sledge and base frames that are connected by
the sliding mode condition, is established using the proposed coupling method. The dynamic responses of the
coupled model for sinusoidal external forces are then analyzed to investigate the nonlinear dynamic
characteristics of the tilting structure.

4.1. Tilting structure

The tilting structure of a tilting train is attached on the roof of the carriage and supports the pantograph
such that it can maintain the horizontal position of the pantograph while traveling on curved lines. Shown in
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Fig. 10. Dynamic responses of plate model-2 measured at node-150: (a) excitation force-1; (b) excitation force-2; and (c) excitation force-3.
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Fig. 12 is the tilting structure for a roof mounted active pantograph, which consists of base and sledge
frames connected with each other under the sliding mode condition. The weights of the base and sledge
frames are 184 and 127 kg, respectively. The sledge frame has three roller sets restricted to follow two
guide lines of the base frame fixed on the roof using 10 fixing points. The maximum displacement of the
rollers on the guide lines is limited to 7322.5mm along the guide lines. The frame is connected by two
main springs attached on both sides of the base frame to maintain its neutral position without external
forces, and is driven by the main belt, which transmits the driving force from the electric motor to the
frame.

In order to establish a reduced dynamic model of the tilting structure, the structure is divided into two
substructures, substructure A (base frame) and substructure B (sledge frame). The material of the frames is
SS400 and its properties are listed in Table 3. MSC/PARTRANs is used to construct the finite element
models of the substructures, as shown in Fig. 13a. Sub-A has 512 tria-3 and quad-4 elements, and Sub-B has
259 tria-3 and quad-4 elements. The total dofs of Sub-A and Sub-B are 2683 and 1422, respectively. The
frequency range of interest of the tilting structure is 0–100Hz. Thus, the first seven and nine modes are used to
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Fig. 11. Dynamic response motions of plate model-2 for excitation force-2.

Fig. 12. 3D CAD model of the tilting structure.

Table 3

Material properties of Sub-A and Sub-B.

SS400

Density 7.85 g/cm3

Tensile ultimate strength 400–500Mpa

Tensile yield strength 250Mpa

Modulus of elasticity 200Gpa

Poisson ratio 0.26

Shear modulus 79.3Gpa

D.-K. Kim et al. / Journal of Sound and Vibration 321 (2009) 704–720 715
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Fig. 13. Substructure models and mode shapes: (a) finite element models, (b) constraint modes, (c) first normal modes (Sub-A: 55.89Hz,

Sub-B: 80.82Hz).
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represent the base and sledge frames, respectively, as shown in Fig. 13c. By using the proposed coupling
method, a reduced dynamic model of the tilting structure is established as shown in Fig. 14. The total dofs of
the tilting structure can be reduced from 4105 to 100. The substructures are connected by the sliding mode
conditions in the interface coordinates. The main springs are represented by the springs and dampers, and
their coefficients are 5000N/m and 30N s/m, respectively.

4.2. Dynamic characteristics

The dynamic characteristics of the coupled model are investigated through dynamic analyses of the tilting
structure excited by three kinds of external forces listed in Table 4. The excitation frequency of force-1 is
0.99Hz, which is near to the first natural frequency of the sledge frame in the y-direction, the frequency of
force-2 is 19.8Hz, which is near to the second natural frequency in the x-direction, and these two excitation
frequencies are applied simultaneously in both directions in force-3.



ARTICLE IN PRESS

Table 4

Excitation forces for tilting structure.

Cases Excitation forces (N)

1 Fx ¼ 0, Fy ¼ 100� sin(2p� 0.99� t), Fz ¼ 0

2 Fx ¼ 3000� sin(2p� 19.8� t), Fy ¼ 0, Fz ¼ 0

3 Fx ¼ 3000� sin(2p� 19.8� t), Fy ¼ 100� sin(2p� 0.99� t), Fz ¼ 0

Base Frame

Sledge Frame Node-140

Roller 1

Roller 3

Z

X

Y

Roller 2

Guide Line 1

Guide Line 2
Fy (t)

Fx (t)

K

C

Fig. 14. Coupled model of the tilting structure and applied forces.
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Fig. 15 shows the dynamic displacements of node-140, the center of the sledge frame. The resonance motion
of the sledge frame in the y-direction is shown in Fig. 15a. The horizontal displacement of the sledge frame
diverges in the y-direction as the time increases, and the vertical displacement oscillates with the horizontal
position of the sledge frame due to the sliding mode condition. Fig. 15b shows the dynamic responses of the
sledge frame for force-2. The displacements in the x and z-axes increase rapidly but converge in both directions
as the time increases. Resonant beating phenomena can also be found at less than 5 s. Fig. 15c shows the
dynamic responses for force-3. The displacements in the x, y, and z-directions increase gradually, and then
decrease as the time increases, similar to the resonant beating phenomenon. Although the maximum
magnitude of the displacement in the x-direction is restricted to 19mm for force-2, it increases up to 102mm
for force-3 because the motion is coupled with sliding motion of the sledge frame in the y-direction. The
dynamic response motions for excitation force-3 are shown in Fig. 16, which clearly verify the dynamic
connectivity between the substructures and the sliding mode condition.

From the results, it is noted that because of the nonlinearity of the sliding mode condition, the resonant
frequencies and responses of the tilting structure vary according to the position of the sledge and the
magnitude of external forces. The displacement in the z-direction, which mostly affects the pantograph in its
power collection, can be resonated by external forces in the x and y-directions. Therefore, these nonlinear
effects should be considered in the analyses of the dynamic responses of the pantograph tilting system in order
to assure not only efficiency of the power collection but also the safety of the tilting train.
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Fig. 15. Dynamic responses of the tilting structure measured at node-140: (a) excitation force-1; (b) excitation force-2; and (c) excitation

force-3.
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5. Conclusions

The CMS method is improved to construct a dynamic model of nonlinear structures with the sliding mode
condition. For validation of the extended coupling method, numerical plate model-1 consisting of two
substructures that are connected by seven torsional springs is synthesized, and its modal parameters are
compared with analysis results obtained by MSC/NASTRANs. An improved coupling method is then
proposed to consider the structural nonlinearity of the sliding mode condition. The improved method is
applied to numerical plate model-2 consisting of three substructures that are connected by the sliding mode
condition, and the coupled structural model is verified by dynamic results. Finally, using the proposed
coupling method, a reduced nonlinear model of the tilting structure consisting of sledge and base frames is
established. Dynamic analyses of the tilting structure are performed for resonant external forces, and the
nonlinear dynamic characteristics are investigated. The analysis results show that the improved coupling
method is effectively applicable to the structural analyses of nonlinear structures with not only hinge joints but
also the sliding mode condition. The additional numerical or experimental validations of the present coupling
method are subjects of future work.
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Fig. 16. Dynamic response motions of the tilting structure for excitation force-3.
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